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Continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) is immune
to all detector side channel attacks, however its security requires trusted sources. We investigate the effects
of source intensity errors, the most crucial source error, on the security of CV-MDI-QKD protocol with
Gaussian-modulated coherent states. We establish a general source intensity errors model and derive the secret
key rate based on different assumptions on the abilities of legal parties Alice and Bob. To avoid the adverse
effects of the sources’ intensity errors on CV-MDI-QKD, we present different data-processing schemes. We also
assess the security of the protocol against collective Gaussian attacks in the finite-size scenario with composable
security. Taking source intensity errors into consideration, we achieve improved security compared to previous
demonstrations. Our results will provide a useful reference for practical implementations of CV-MDI-QKD.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] allows two remote
and legal parties, Alice and Bob, to distill a common secret
key, despite the presence of a potential eavesdropper, Eve.
Its security is guaranteed by the fundamental laws of quan-
tum physics [3–7]. Three differing categories of QKD proto-
cols have been proposed and demonstrated: discrete-variable
(DV), continuous-variable (CV), and distributed phase refer-
ence. In CV-QKD [5–8], the key information is encoded in
quadratures of the quantized electromagnetic field, such as
those of coherent states [9,10]. Combined with high-efficiency
homodyne (heterodyne) measurements, high secret key rates
at metropolitan distances can be achieved. Moreover, it can
also be conveniently integrated into current passive optical
networks. The potential advantages have received extensive
attention, and CV-QKD has witnessed rapid development. A
number of CV-QKD protocols have been studied and exper-
imentally demonstrated [11–31] over the past two decades.
Recently, CV quantum repeaters have been designed, and it
is shown that the fundamental rate-distance limit of direct-
transmission CV-QKD can be broken, and a secure key can be
generated over thousands of kilometers [32,33].

Despite the current rapid progress, there are still some
challenges for the real applications of CV-QKD, one of which
is its practical security. Theoretically, the CV-QKD proto-
cols have been proven to be unconditionally secure [8,34–
36]. In practical implementation, due to the fact that some
ideal assumptions of the devices cannot be fully satisfied,
some potential security loopholes may be opened, which can
be exploited by the eavesdropper to carry out attacks and
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acquire secret key information without being noticed. To
close these loopholes, a device-independent QKD (DI-QKD)
[37,38] protocol was proposed to remove all assumptions of
the internal working of QKD. However, it is still impractical
due to its low secret key rate and short transmission distance.
Later on, a measurement-device-independent QKD (MDI-
QKD) [39,40] protocol was invented to remove all potential
security loopholes in the detection side, the most vulnerable
part in practical implementation of a QKD system. It has
favorable performance and is feasible at a long distance. As
a counterpart, the notion of MDI was subsequently extended
to the CV framework [41–45]. In CV-MDI-QKD protocols,
both Alice and Bob prepare quantum states and send them to
an untrusted third party, Charlie, who performs CV Bell state
detection on each received quantum state pair and announces
his measurement outcome in a public channel. After data
postprocessing, the correlation between Alice’s and Bob’s
data is established and a secret key can be distilled. Note that
the one-sided device-independent (1sDI) CV-QKD protocol
has been proposed recently [46,47].

The security of the CV-MDI-QKD protocol with Gaussian-
modulated coherent states has been firmly established in the
finite-size regime [48,49] and composable framework [50].
Although CV-MDI-QKD is intrinsically immune to all de-
tector side-channel attacks, the sources are assumed to be
perfectly stable. Even though one can control the source
pretty well in practice, there are inevitably some errors. The
source errors may occur due to the intensity fluctuation of
optical pulses, imprecise alignments of optical modulators
and attenuators, unavoidable disturbance from external en-
vironments, etc. If the source error is not properly handled,
Alice and Bob may overestimate their secret key rate without
knowing it and pose a security risk. To address imperfections
of state preparation in one-way CV-QKD, several models have

2469-9926/2020/102(2)/022609(13) 022609-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0055-0929
https://orcid.org/0000-0003-0228-7693
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.022609&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevA.102.022609


PU WANG, XUYANG WANG, AND YONGMIN LI PHYSICAL REVIEW A 102, 022609 (2020)

FIG. 1. (a) Prepare-and-measure (PM) scheme of CV-MDI-QKD protocol with Gaussian-modulated coherent states. (b) The equivalent
entanglement-based (EB) scheme. (c) The signal pulse intensity changes with time ti. (d) The signal pulse intensity follows a Gaussian
distribution with a mean value of (1 + ϕ)I . (e) The signal pulse intensity follows a uniform distribution centered in (1 + ϕ)I . (f) The statistical
distribution of the signal pulse intensity is unknown. (g) The upper and lower boundaries of the intensity errors.

been proposed [51–56]. Recently, the imperfection of state
preparation was extended to CV-MDI-QKD [57], where the
security analysis is based on the single-mode Gaussian attack
in the asymptotic limit.

The source intensity fluctuation is the main source imper-
fection commonly existing in various QKD systems. Analysis
of its effect on the security of the QKD protocols is essential.
A series of studies have been done on enhancing the security
of DV-QKD and DV-MDI-QKD by carefully examining the
source intensity errors in practical implementations [58–65].
In contrast to the extensive study of source intensity errors in
a DV field, the relevant research in the CV field lags behind.
Recently, the effect of the intensity fluctuating source on the
one-way CV-QKD protocol was reported [66]. However, the
influence of the source intensity errors on the security analysis
of CV-MDI-QKD is still an open question.

In this paper, we establish a general source intensity error
model for CV-MDI-QKD, in which not only the intensity fluc-
tuations but also the intensity deviations are involved. In prac-
tice, the imprecise alignments of source devices (modulators
or attenuators) may lead to the intensity deviation [67], which
drifts slowly and can be treated as a constant within each QKD
transmission round. Based on different assumptions on the
abilities of Alice and Bob (we do not place any restriction on
Eve, and consider the worst case that she knows exactly the
intensity side information of each pulse), we propose different
data processing schemes and derive rigorously the secret key
rate of the CV-MDI-QKD protocol with Gaussian-modulated
coherent states against two-mode Gaussian attack. We also
present a finite-key security analysis against collective Gaus-
sian attacks in the composable security framework for the
CV-MDI-QKD protocol with source intensity errors.

The rest of this paper is organized as follows. In Sec. II,
we provide a short review of the CV-MDI-QKD protocol with
Gaussian-modulated coherent states. In Sec. III, we present
a general model of the CV-MDI-QKD protocol with source

intensity errors, and we show the details of how to calculate
the secure key rate based on the two different assumptions
about the abilities of Alice and Bob. In Sec. IV, without
assumption of any specific distribution, we derive the secret
key rate of the protocol in the asymptotic regime and the
finite-size regime with composable security, respectively. Our
conclusions are drawn in Sec. V.

II. CV-MDI-QKD PROTOCOL WITH
GAUSSIAN-MODULATED COHERENT STATES

In this section, we review briefly the Gaussian-modulated
coherent states CV-MDI-QKD protocol. The general process
of this protocol is described as follows [Fig. 1(a)].

Alice (Bob) uses signal pulses with intensity IA (IB) to
prepare a series of Gaussian-modulated coherent states |αA〉
(|αB〉). In the phase space, they can be expressed as

|αA〉 = ||αA|eiθA〉 = |xA + ipA〉,
|αB〉 = ||αB|eiθB〉 = |xB + ipB〉,

(1)

where |αA| (|αB|) is the complex amplitude of the coherent
state and IA ∝ |αA|2 (IB ∝ |αB|2); θA and θB indicate the phase
of the coherent states; xA and pA (xB and pB) represent two
independent field quadratures with zero mean and identical
variance VA (VB) in shot-noise units (SNUs). Then both Alice
and Bob send their coherent states to Charlie through two
different quantum channels. On Charlie’s station, the received
two signal states are interfered at a beam splitter (BS) with
a transmittance of 50%, which produces correlated output
states. The output states are subsequently detected by using
two homodyne detectors: one detects the amplitude quadra-
ture and the other detects the phase quadrature, and the final
measurement results are publicly announced by Charlie. With
this announced information, either Alice or Bob can modify
the data at hand and generate correlated data with the other.

022609-2



CONTINUOUS-VARIABLE … PHYSICAL REVIEW A 102, 022609 (2020)

For convenience of security analysis, we consider the
equivalent entanglement-based (EB) scheme [Fig. 1(b)]. Alice
starts with an Einstein-Podolsky-Rosen (EPR) state ρaA with
variance VA + 1 and performs heterodyne detection on the
retained mode a, which projects mode A onto coherent states.
The mode A is sent to an untrusted quantum relay, Charlie, via
a quantum channel with length LAC , which is assumed to be
controlled by a potential eavesdropper, Eve, and characterized
by the transmission TA and excess noise εA. Likewise, Bob
does the same. On Charlie’s station, the realistic homodyne
detector is modeled by assuming that the signal is further at-
tenuated by a BS transformation with transmission efficiency
η and mixed with some thermal noise VN that simulates the
electronic noise vel of the detector. Then the x quadrature of
mode C and the p quadrature of mode D are measured by
perfect homodyne detectors, and Charlie publicly announces
a complex variable r = (xC + ipD)/

√
2 to Alice and Bob

through a classical channel. After that, Alice and Bob can
infer each other’s data, and with classical data postprocessing,
namely parameter estimation, information reconciliation, and
privacy amplification, the secret keys can be extracted.

Here we consider a joint two-mode Gaussian attack
[Fig. 1(b)] [41,68], where Eve’s two ancillary modes E1

and E2 are extracted from a reservoir of entangled states
{E1, E2, e} and mixed with two incoming modes A and B.
They have the covariance matrix of the form [41]

γE1E2 =
[
ωAI G
G ωBI

]
, G =

[
g 0
0 g1

]
, (2)

where ωA and ωB are the variances of the thermal noise
introduced by E1 and E2, respectively. g and g1 represent
the quantum correlations between the two modes and must
satisfy the physical constraints imposed by the Heisenberg
uncertainty principle.

When Alice is the encoder of information, after communi-
cation of Charlie’s outcome r, the asymptotical secret key rate
against collective attacks is expressed as [41]

K∞ = βIab|r − χaE |r , (3)

where β is the reconciliation efficiency, Iab|r is the Shannon
mutual information between Alice and Bob, and χaE |r is
the Holevo bound between Alice and Eve, which puts an
upper limit on the information available to Eve on Alice’s
key. Details for calculation of the key rate can be found in
Appendix A.

The result above is based on one assumption that all states
are prepared perfectly. However, in practical implementation,
there are inevitably some preparation errors, such as source
intensity errors [Fig. 1(c)]. In this case, the initial states sent
from the sources are different from the target states that
Alice and Bob want to prepare. In the following sections,
we consider the effects of such source errors on the security
of the CV-MDI-QKD protocol. We first discuss two types
of statistical distributions of the intensity errors: Gaussian
distribution [Fig. 1(d)] and uniform distribution [Fig. 1(e)],
and we derive the formulas of the secret key rate under two-
mode Gaussian attack. Then we remove the assumption of any
specific distribution [Fig. 1(f)], and we derive the secure secret
key rate given that Alice and Bob only know the upper and
lower boundary values of the intensity errors [Fig. 1(g)].

III. CV-MDI-QKD WITH SOURCE INTENSITY ERRORS

Suppose the sender wants to prepare her signal pulse with
intensity I; however, at each time ti she actually prepares a
state with the intensity of I ′

i = I (1 + ϕ)(1 + δi ), where ϕ is
the intensity deviation caused by the imprecise alignments
of source devices (modulators or attenuators), which can be
treated as a constant, because its drift is quite slow within each
QKD transmission round, and δi is the intensity fluctuation
arising from the imprecise intensity control of the source pulse
with zero mean and variance of Vf . Since I ∝ |α|2, the actual
encoded Gaussian random variables of Alice and Bob are

x′
A =

√
(1 + ϕA)(1 + δAi )xA,

p′
A =

√
(1 + ϕA)(1 + δAi )pA,

x′
B =

√
(1 + ϕB)(1 + δBi )xB,

p′
B =

√
(1 + ϕB)(1 + δBi )pB. (4)

After the prepared states transmit through the quantum
channel, Charlie performs a CV Bell state detection and
obtains

x′
C = 1√

2
(
√

tBx′
B − √

tAx′
A) + xN ,

p′
D = 1√

2
(
√

tB p′
B + √

tA p′
A) + pN ,

(5)

where tA/B = ηTA/B, xN and pN are noise terms, and their
variances are given by

σ 2
xN

= η

2
(l − 2

√
1 − TA

√
1 − TBg) + ηχhom,

σ 2
pN

= η

2
(l + 2

√
1 − TA

√
1 − TBg1) + ηχhom,

(6)

where

l = εATA + εBTB + 2. (7)

Next, based on different assumptions on the abilities of
Alice and Bob to characterize the source errors, we investigate
the effects of source intensity errors on the security of the
CV-MDI-QKD protocol.

A. Alice and Bob have the intensity side information of each
individual pulse

Let us first make an assumption that Alice and Bob know
the intensity side information of each individual pulse. In
this case, Alice and Bob are able to correct the errors of
each individual pulse pretty well in principle, such as making
real-time feedback control to the optical source. However,
this will increase the complexity and cost of the system. It is
possible to estimate a security key rate without any hardware
adjustment. More precisely, Alice and Bob can revise their
data from xA/B, pA/B to x′

A/B, p′
A/B. In this case, the channel

parameters can be correctly estimated, and the final secret key
rate is calculated as

K∞
final =

∫∫ +∞

−∞
f
(
δAi

)
f
(
δBi

)
K∞(

VAi ,VBi

)
dδAi dδBi , (8)

where f (δAi ) and f (δBi ) represent the probability den-
sity function of δAi and δBi , respectively, and VAi =
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(1 + ϕA)(1 + δAi )VA, VBi = (1 + ϕB)(1 + δBi )VB. By numeri-
cal simulation, we find that the final secret key generation rate
is basically the same as that without the source errors.

Concretely, we notice that

V (x′
A/B) = V

(√
(1 + ϕA/B)

(
1 + δAi/Bi

)
xA/B

)
= (1 + ϕA/B)

〈(√(
1 + δAi/Bi

)
xA/B

)2〉
= (1 + ϕA/B)VA/B, (9)

and V (p′
A/B) = V (x′

A/B) = (1 + ϕA/B)VA/B. This means that
Alice and Bob actually prepare the Gaussian or non-Gaussian
modulation coherent states with variances (1 + ϕA)VA and
(1 + ϕB)VB. Considering that Alice and Bob choose optimal
modulation variances VA and VB to encode their information,
according to the optimality of Gaussian modulation, the final
secret key rate of protocol will slightly decrease, in contrast to
the ideal protocol.

B. Alice and Bob only know the statistical distribution
of the pulse intensity

In some cases, Alice and Bob only know the statistical
distribution rather than the intensity side information of each
individual pulse. For instance, ϕ and δi are evaluated before
the QKD run. Here, we mainly discuss two types of dis-
tributions of δi, namely Gaussian distribution and uniform
distribution.

To estimate the secret key rate, the channel parameters TA,
εA, TB, εB should be known. If Alice and Bob use the recorded
data xA/B and pA/B for the parameter estimation, we can obtain
(see Appendix B for more details)

T ′
A = (1 + ϕA)TfA TA,

T ′
B = (1 + ϕB)TfB TB,

(10)
ε′

A ≈ εA/(1 + ϕA)TfA + 1
4VAVfA ,

ε′
B ≈ εB/(1 + ϕB)TfB + 1

4VBVfB ,

where TfA/B = (1 − VfA/B/8)2, and VfA/B is the variance of δAi/Bi .
In addition,

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g, g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1.

(11)

When there is a minus intensity deviation, which means
ϕ < 0, we can see that the channel loss and excess noise
are always overestimated. However, when there is a positive
intensity deviation (ϕ > 0), the channel loss and excess noise
are not always overestimated and may be underestimated.
For instance, we assume the parameters have the concrete
values of ϕA = ϕB = 0.1, VfA = VfB = 10−4, VM = 20, and
εA = εB = 0.05. Since Eve has the intensity side information,
she can perform a partial intercept-resend (PIR) attack [69,70]
and hide the excess noise introduced by her PIR attack accord-
ing to ϕ, so that the estimated total excess noise is equal to or
even smaller than the original excess noise. Therefore, if Alice
and Bob use the recorded data xA/B and pA/B for the parameter
estimation, they will overestimate the secret key rate without
knowing it, and this opens a security loophole.

To overcome this loophole, we propose to revise the
recorded data of Alice and Bob from xA/B, pA/B to√

(1 + ϕA/B)xA/B,
√

(1 + ϕA/B)pA/B and use the corrected
data for the parameter estimation. In this case, we have
(Appendix B)

T ′
A = TfA TA,

T ′
B = TfB TB,

(12)
ε′

A ≈ εA/TfA + 1
4 (1 + ϕA)VAVfA ,

ε′
B ≈ εB/TfB + 1

4 (1 + ϕB)VBVfB ,

and

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g, g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1.

(13)

We can find from Eq. (12) that the channel loss and excess
noise are overestimated and the potential loophole mentioned
above can be closed. Then, Alice and Bob can use the cor-
rected data

√
(1 + ϕA/B)xA/B,

√
(1 + ϕA/B)pA/B to obtain the

final secret key rate. However, this is still not the best choice,
since the key rate can be further improved by enlarging the
data, as shown below.

It is clear that the signal pulse that has a higher intensity
than what Alice and Bob plan to send is insecure [66,67]. Thus
they can only use the signal pulses with lower intensity than
expected to extract the secret keys. To obtain greater numbers
of signal pulses for key extraction, Alice and Bob need to en-
large their data. Suppose Alice and Bob revise their data from√

(1 + ϕA/B)xA/B,
√

(1 + ϕA/B)pA/B to
√

(1 + ϕA/B)dA/BxA/B,√
(1 + ϕA/B)dA/B pA/B, where dA/B � 1. Then the probabilities

of Alice and Bob sending low-intensity signal pulses are

PA =
∫ dA−1

−∞
f
(
δAi

)
dδAi , PB =

∫ dB−1

−∞
f
(
δBi

)
dδBi . (14)

Here we set dA/B � dU
A/B (the upper boundary of the distribu-

tion interval) for the uniform distributed intensity fluctuation
and dA/B � 1 + 3

√
VfA/B (considering the confidence interval

with three standard deviations) for Gaussian distributed inten-
sity fluctuation.

If Alice and Bob use the revised data for parameter estima-
tion, they have (Appendix B)

T ′
A = TfA TA/dA,

T ′
B = TfB TB/dB,

(15)
ε′

A ≈ εAdA/TfA + 1
4 (1 + ϕA)dAVAVfA ,

ε′
B ≈ εBdB/TfB + 1

4 (1 + ϕB)dBVBVfB ,

and

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g, g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1.

(16)

Because there are two optical sources in CV-MDI-QKD,
the secret keys can only be extracted when they both send low-
intensity pulses; the corresponding probability is P = PAPB.
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FIG. 2. Secret key rate vs the transmission distance in the sym-
metric case with different source intensity deviations and fluctu-
ations. (a) Uniform distributed intensity fluctuation; (b) Gaussian
distributed intensity fluctuation. Here, we set the reconciliation ef-
ficiency β = 0.97, modulation variance VM = 60, excess noise εA =
εB = 0.002 SNUs, detection efficiency η = 0.97, and electrical noise
vel = 0.01.

The final secret key rate is then given by [66]

K∞
final = βIab|r − (1 − P)[H (ax|r) + H (ap|r)] − PχaE |r,

(17)

where (1 − P)H (ax|r) and (1 − P)H (ap|r) are the informa-
tion entropy that cannot be used to extract the secure secret
keys on the amplitude and phase quadratures of Alice (as-
suming Alice is the encoder side), respectively. Obviously,
larger dA/B indicates that more signal pulses are used for key
extraction, but the cost is that the estimated channel loss and
excess noise will be higher. Therefore, there is a tradeoff to
choose the optimal dA/B.

First, we consider the symmetric CV-MDI-QKD protocol
in which the untrusted third party, Charlie, is in the middle
of Alice and Bob, LAC = LBC . Figure 2 shows the secret

key rate K∞
final as a function of the transmission distance L =

LAC + LBC for different intensity deviations and fluctuations,
where Figs. 2(a) and 2(b) present the results for the uniform
distributed intensity fluctuation and the Gaussian distributed
intensity fluctuation, respectively. The black solid curve de-
picts the secret key rate without intensity error, and the upper
(dark yellow) solid curve is the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) bound [71], which represents the maximum
secret key rate achievable in a repeater-less and lossy channel
system. Here, we set ϕA = ϕB = ϕ, δA = δB = δ, VfA = VfB =
Vf , η = 0.97, and vel = 0.01. We can see that both the secret
key rate and transmission distance decrease with the increases
of fluctuation strength. Notice that even with a large deviation
of ϕ = 0.2, the secret key rate is almost unaffected. This is
mainly due to the fact that after the data are corrected, the
intensity deviation, as expected, has a negligible impact on
the parameter estimation of the protocol.

In CV-MDI-QKD protocols, it has been proved that the
performance of the asymmetric case (LAC �= LBC) is superior
to the symmetric case (LAC = LBC) [41,42,45]. When Alice
is the encoder of information, the total transmission distance
L = LAC + LBC increases significantly as LAC decreases. If the
distance between Charlie and Alice is 0 (LAC = 0), the total
transmission distance will reach its maximal value. In this case
(the most asymmetric case), the two-mode Gaussian attack de-
generates into two independent Gaussian attacks [68], which
means g = g1 = 0. For different intensity fluctuations, the
secret key rates versus the transmission distance in the most
asymmetric case are plotted in Fig. 3, where (a) and (b) denote
the results for the uniform distributed and Gaussian distributed
intensity fluctuations, respectively. The results show that the
intensity fluctuation of Alice’s source has a greater negative
impact on the performance of the protocol compared with that
of Bob’s source, because Alice is the encoder. Therefore, if the
two sources have different intensity fluctuations, the relatively
stable source should be placed at the encoder side.

IV. NO ASSUMPTION OF ANY SPECIFIC DISTRIBUTION
OF INTENSITY ERRORS

Up to now, we have discussed two types of statistical
distributions of the intensity errors: Gaussian distribution and
uniform distribution. In this section, we remove the assump-
tion of any specific distribution, and we derive the secure
secret key rate given that Alice and Bob only know the upper
and lower bound values of intensity errors. Furthermore, we
extend the security of the protocol into a finite-size scenario
with composable security.

We assume that the intensity of Alice’s (Bob’s) signal
pulse is bounded by [IL

A , IU
A ] ([IL

B , IU
B ]), where IL(U )

A (IL(U )
B )

represents the lower (upper) bound values of the intensity
errors of Alice’s (Bob’s) source, and IL(U )

A = kL(U )
A IA (IL(U )

B =
kL(U )

B IB). We also consider the worst-case scenario in which
the eavesdropper knows exactly the intensity side information
of each individual pulse. Because the intensity probability
distribution is unknown, we cannot assess the information
acquired by Eve. But fortunately, the key is secure when the
signal pulses sent by Alice and Bob have lower intensity than
expected. Thus, in order to ensure secure communication, we
only need to adjust the data retained by Alice and Bob from
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FIG. 3. Achievable secret key rate vs the transmission distance
in the most asymmetric case for different intensity fluctuations.
Part (a) denotes the results for the uniform distributed intensity
fluctuation, and (b) denotes the results for the Gaussian distributed
intensity fluctuation. The green dotted-dashed curve is plotted with
an intensity deviation of δA = δB = 0.01, and there is no intensity
deviation for other curves. dA/B is optimal, and other parameters are
set to β = 0.97, VM = 19, εA = εB = 0.002, η = 0.97, vel = 0.01.

xA/B, pA/B to
√

kU
A/BxA/B,

√
kU

A/B pA/B, and use them to perform

the parameter estimation and key extraction tasks.
Referring to Appendix C 1, when Alice and Bob use the

revised data
√

kU
A/BxA/B and

√
kU

A/B pA/B for parameter estima-

tion, we have

T ′
A = TkA TA/kU

A ,

T ′
B = TkB TB/kU

B ,
(18)

ε′
A ≈ εAkU

A /TkA + VkA

4m2
kA

kU
A VA,

ε′
B ≈ εBkU

B /TkB + VkB

4m2
kB

kU
B VB,

FIG. 4. The secret key rate vs the transmission distance when
the statistical distributions of the intensity errors are unknown. Part
(a) represents the symmetric case with VM = 60, and (b) represents
the most asymmetric case with VM = 19. Other parameters are set to
β = 0.97, εA = εB = 0.002, η = 0.97, and vel = 0.01.

and

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g, g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1.

(19)

where mkA and VkA (mkB and VkB ) represent the mean and
variance of kA (kB), and TkA/B = mkA/B (1 − VkA/B/8m2

kA/B
)2.

Then the final secret key rate can be given by

K∞
final = βIab|r (V ′

A,V ′
B, T ′

A, ε′
A, T ′

B, ε′
B, g′, g′

1)

−χaE |r (V ′
A,V ′

B, T ′
A, ε′

A, T ′
B, ε′

B, g′, g′
1), (20)

where V ′
A = kU

A VA, V ′
B = kU

B VB.
Figure 4 shows the secret key rate versus the transmission

distance in the symmetric (a) and most asymmetric (b) cases
with different intensity errors. Here different mean values and
variances for kA (kB) are used to analyze the performance
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of the protocol. For simplicity, we set kU
A = kU

B = kU , mkA =
mkB = mk , VkA = VkB = Vk . The results show that the secret
key rate of the most asymmetric case looks more sensitive to
source intensity errors than that in the symmetric case. Larger
source error means shorter achievable distance.

In a practical implementation of any protocol, the total
number of signals exchanged between Alice and Bob is
always finite. Therefore, we should consider the finite-size
effect. One of the most crucial parts in the finite-size regime is
parameter estimation. Different from the asymptotic case, we
have to consider the largest possible difference between the
expected values and the real observed values due to statistical
fluctuations. Here, we exploit the technique of Ref. [49],
where the authors have shown that the parameter estimation
in CV-MDI-QKD can be performed with almost no public
communication. This means that Alice and Bob can use all
their raw data for both parameter estimation and secret-key
extraction. Then the tradeoff between secret key rate and
accuracy of the parameter estimation in the finite-size regime
can be removed. Based on this technique, a tight finite-size
analysis with composable security for the CV-MDI-QKD
protocol has been presented [50]. Here, we extend this work
to the case with intensity fluctuations.

The lower bound of the secret key rate against collective
Gaussian attacks provided by composable security can be
expressed as [50]

Ks′
com = RL − 1√

n
�AEP

+1

n
log2

(
p − 2

3
psSM

)
+ 2

n
log2(2s), (21)

where s′ is the overall security parameter and s′ = s + sSM +
sEC + sPE. s comes from the leftover hash lemma; sSM is the
smoothing parameter entering the smooth conditional min-
entropy; sEC is the error in the error-correction routine; and sPE

is the probability of error related to the parameter estimation
procedure. n denotes the total number of signals exchanged
between Alice and Bob. p is the probability of successful

error correction. �AEP = 4(d + 1)
√

log2(9/2p2s2
SM), where d

is the number of bits on which each measurement result is
encoded. And

RL = βIab
(
�max

a ,�max
b ,�min

c

)
−χaE

(
�max

a ,�max
b ,�min

c

)
, (22)

where �max
a , �max

b , and �min
c are the boundary values on

covariance matrix elements with statistic fluctuations. These
values give a lower bound on the secret key rate and ensure
the security of the CV-MDI-QKD protocol in the finite-size,
composable setting. Detailed derivations can be found in
Appendix C 2.

Figure 5 shows the lower bound of the secret key rate as a
function of total exchanged signals n in the symmetric (a) and
most asymmetric (b) cases considering both the source errors
and composable security. Here, we consider a fixed source
error: kU = 1.01, mk = 1.002, and Vk = 10−5. The key rate
is obtained by optimizing modulation variance. We can find
that the finite size obviously limits the secret key rate of the
protocol. For each transmission distance, there is a minimal

FIG. 5. Lower bound of the secret key rate vs the number
of exchanged signals n with different transmission distances. Part
(a) represents the symmetric case, and (b) represents the most asym-
metric case. The plots are obtained by setting p = 0.99, s = sSM =
sEC = sPE = 10−21, and d = 5. Other parameters are set to β = 0.97,
εA = εB = 0.002, η = 0.97, and vel = 0.01.

n corresponding to a positive key rate. However, with the
increase of the number of exchanged signals, the key rate
increases rapidly and almost reaches that of the asymptotic
case.

To further study the effect of intensity fluctuations, in Fig. 6
we simulate the secret key rate versus transmission distance
with different intensity fluctuations for n = 108. It is clear that
intensity fluctuations degrade the performance of the protocol.
We also see that it is possible in principle to obtain a high
secret key rate for a practical block size of n = 108. There-
fore, our results indicate that the CV-MDI-QKD protocol
with source intensity errors is still feasible when considering
the finite-size effects with composable security, although the
secret key rate is decreased to some extent compared with that
of the ideal source.
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FIG. 6. Lower bound of the secret key rate vs the transmission
distance for n = 108 with different intensity fluctuations. Part (a) rep-
resents the symmetric case, and (b) represents the most asymmetric
case. Other parameters are the same as in Fig. 5.

V. CONCLUSIONS

We have presented a security analysis for CV-MDI-QKD
with source intensity errors. Specifically, we have established
a general intensity error model and derived the secure key
rate of the CV-MDI-QKD protocol under two-mode Gaussian
attack based on different assumptions on the abilities of Alice
and Bob. A data-processing scheme was proposed to improve
the security due to the intensity deviations of the source. In
addition, we found that the intensity fluctuation on the en-
coder’s side has a greater negative impact on the performance
of the protocol compared with that on the nonencoder’s side.
Therefore, for two sources with different intensity fluctuation,
the relatively stable source should be placed at the encoder’s
side to optimize the protocol. Furthermore, we have assessed
the security of the protocol against collective Gaussian attacks
in the finite-size scenario with composable security. The most

general class of coherent attacks can immediately be obtained
by exploiting the Gaussian–de Finetti reduction [36,50].

In conclusion, our work verifies the feasibility of the CV-
MDI-QKD protocol with source intensity errors, and it con-
stitutes an important step toward the practical security of the
CV-MDI-QKD protocol. It is interesting to further investigate
other practical security issues of CV-MDI-QKD in the future.
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APPENDIX A: CALCULATION OF THE SECRET KEY
RATE

Based on Charlie’s outcome r, the covariance matrix γab|r
is given by

γab|r =
[
V I 0
0 V I

]
− (V 2 − 1)

×

⎡
⎢⎢⎢⎣

TA
θ

0 −
√

TATB

θ
0

0 TA
θ ′ 0

√
TATB

θ ′

−
√

TATB

θ
0 TB

θ
0

0
√

TATB

θ ′ 0 TB
θ ′

⎤
⎥⎥⎥⎦, (A1)

where we have set V = VM + 1, VM = VA = VB, and

θ = (TA + TB)VM + εATA + εBTB + 2

− 2
√

1 − TA

√
1 − TBg + 2χhom,

θ ′ = (TA + TB)VM + εATA + εBTB + 2

+ 2
√

1 − TA

√
1 − TBg1 + 2χhom. (A2)

Here, χhom = (1 − η)/η + vel/η is the total noise introduced
by the realistic homodyne detector, referred to its input.

The covariance matrix of the state ρb|ra, conditioned on
Alice’s heterodyne measurement results xa, pa, is given by

γb|ra = γb|r − σab|r (γa|r + 1)MPσ T
ab|r, (A3)

where γb|r , σab|r , and γa|r are the submatrices of the covariance
matrix γab|r ; MP denotes the Moore-Penrose inverse of a
matrix. The conditional matrix is thus given by

γb|ra =
[

V − (V 2−1)TB

θ−VM TA
0

0 V − (V 2−1)TB

θ ′−VM TA

]
. (A4)

Then, the Shannon mutual information between Alice and
Bob can be calculated by

Iab|r = 1

2
log2

V x
b|r + 1

V x
b|ra + 1

+ 1

2
log2

V p
b|r + 1

V p
b|ra + 1

= 1

2
log2

ξ1

ξ2
, (A5)

where

ξ1 = (θ − VMTA)(θ ′ − VMTA)(θ − VMTB)(θ ′ − VMTB),

ξ2 = θθ ′(θ − VMTA − VMTB)(θ ′ − VMTA − VMTB). (A6)
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Because Eve’s system purifies ab, the Holevo bound χaE |r
can be written as

χaE |r = S(ρE |r ) − S(ρE |ra)

= S(ρab|r ) − S(ρb|ra). (A7)

S(ρab|r ) is the von Neumann entropy of the quantum state
ρab|r and can be calculated from the symplectic eigenvalues
λ1,2 of the covariance matrix γab|r ,

λ1,2 =
√

1

2
(A ±

√
A2 − 4B), (A8)

where A = 2V 2 + [ξ 2
3 − V (θ + θ ′)ξ4]/θθ ′, B = V 2(ξ4 − V θ )

(ξ4 − V θ ′)/θθ ′, ξ3 = (V 2 − 1)TA − (V 2 − 1)TB, and ξ4 =
(V 2 − 1)TA + (V 2 − 1)TB.

S(ρb|ra) can be calculated from the symplectic eigenvalues
λ3 of the covariance matrix γb|ra, and λ3 = √

det γb|ra.
Then,

χaE |r = G

(
λ1 − 1

2

)
+ G

(
λ2 − 1

2

)
− G

(
λ3 − 1

2

)
, (A9)

where G(x) = (x + 1)log2(x + 1) − x log2x.
Finally, the secure secret key rate is calculated using

Eqs. (3), (A5), and (A9). Note that it has been proven that the
optimal correlated attack that Eve can perform is the “negative
EPR attack” in which [41]

g1 = −g = φ,

φ = min{
√

(ωA − 1)(ωB + 1),
√

(ωA + 1)(ωB − 1)},
(A10)

and the key rate meets the minimum value.

APPENDIX B: ESTIMATION OF CHANNEL PARAMETERS

After Charlie’s detection, we have

x′
C = 1√

2
(
√

tBx′
B − √

tAx′
A) + xN ,

p′
D = 1√

2
(
√

tB p′
B + √

tA p′
A) + pN ,

(B1)

where

x′
A/B =

√
(1 + ϕA/B)

(
1 + δAi/Bi

)
xA/B,

p′
A/B =

√
(1 + ϕA/B)

(
1 + δAi/Bi

)
pA/B. (B2)

Thus,

V (x′
C ) = η

2
(u + l − 2

√
1 − TA

√
1 − TBg) + ηχhom,

(B3)
V (p′

D) = η

2
(u + l + 2

√
1 − TA

√
1 − TBg1) + ηχhom,

where

u = TB(1 + ϕB)VB + TA(1 + ϕA)VA. (B4)

If Alice and Bob use the recorded data xA/B and pA/B for
parameter estimation, then√

t ′
Ax = −

√
2
〈xAx′

C〉〈
x2

A

〉 = 〈xA
√

tAx′
A〉〈

x2
A

〉
=

√
(1 + ϕA)tA

〈√(
1 + δAi

)〉
,

√
t ′
Ap =

√
2
〈pA p′

D〉〈
p2

A

〉 = 〈pA
√

tA p′
A〉〈

p2
A

〉
=

√
(1 + ϕA)tA

〈√(
1 + δAi

)〉
. (B5)

Making a Taylor expansion around δAi = 0, we obtain

〈√(
1 + δAi

)〉 ≈ 1 − 1
8VfA , (B6)

hence t ′
A = (1 + ϕA)(1 − VfA/8)2tA.

By defining TfA := (1 − VfA/8)2, we have

T ′
A = t ′

A/η = (1 + ϕA)TfAtA/η = (1 + ϕA)TfA TA. (B7)

Similarly, T ′
B = (1 + ϕB)TfB TB.

To find explicitly the expression of the excess noises, we
assume that the coherent states are perfectly prepared and
transmit through the quantum channels with transmission (T ′

A,
T ′

B) and excess noise (ε′
A, ε′

B). In this case, Charlie’s detection
results x′

C , p′
D can be rewritten as

x′
C = 1√

2
(
√

t ′
BxB −

√
t ′
AxA) + x′

N ,

p′
D = 1√

2
(
√

t ′
B pB +

√
t ′
A pA) + p′

N ,

(B8)

and

V (x′
C ) = η

2
(u′ + l ′ − 2

√
1 − T ′

A

√
1 − T ′

Bg′) + ηχhom,

(B9)

V (p′
D) = η

2
(u′ + l ′ + 2

√
1 − T ′

A

√
1 − T ′

Bg′
1) + ηχhom,

where

u′ = T ′
BVB + T ′

AVA, l ′ = ε′
AT ′

A + ε′
BT ′

B + 2. (B10)

Comparing Eq. (B3) with Eq. (B9), we have

T ′
AVA + ε′

AT ′
A = TA(1 + ϕA)VA + εATA,

T ′
BVB + ε′

BT ′
B = TB(1 + ϕB)VB + εBTB,√

1 − T ′
A

√
1 − T ′

Bg′ =
√

1 − TA

√
1 − TBg,√

1 − T ′
A

√
1 − T ′

Bg′
1 =

√
1 − TA

√
1 − TBg1. (B11)

Simple algebra leads to

ε′
A ≈ εA/(1 + ϕA)TfA + 1

4
VAVfA ,

ε′
B ≈ εB/(1 + ϕB)TfB + 1

4
VBVfB ,

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g,
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g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1. (B12)

If Alice and Bob use the revised data
√

(1 + ϕA/B)xA/B and√
(1 + ϕA/B)pA/B for parameter estimation, we have

√
t ′
Ax = −

√
2

〈√(1 + ϕA)xAx′
C〉

〈(√(1 + ϕA)xA)
2〉

= 〈xA
√

tAx′
A〉√

(1 + ϕA)
〈
x2

A

〉
= 〈√(

1 + δAi

)〉√
tA,

√
t ′
Ap =

√
2
〈√(1 + ϕA)pA p′

D〉
〈(√(1 + ϕA)pA)

2〉
= 〈pA

√
tA p′

A〉√
(1 + ϕA)

〈
p2

A

〉
= 〈√(

1 + δAi

)〉√
tA. (B13)

Hence t ′
A = 〈√(1 + δAi )〉

2
tA = TfAtA and T ′

A = t ′
A/η = TfA TA.

Similarly, T ′
B = TfB TB. Then,

ε′
A ≈ εA/TfA + 1

4
(1 + ϕA)VAVfA ,

ε′
B ≈ εB/TfB + 1

4
(1 + ϕB)VBVfB ,

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g,

g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1. (B14)

If Alice and Bob use the revised data
√

(1 + ϕA/B)dA/BxA/B

and
√

(1 + ϕA/B)dA/B pA/B for parameter estimation, we have

√
t ′
Ax = −

√
2

〈√(1 + ϕA)dAxAx′
C〉

〈(√(1 + ϕA)dAxA)
2〉

=
√

tA√
dA

〈√(
1 + δAi

)〉
,

√
t ′
Ap =

√
2
〈√(1 + ϕA)dA pA p′

D〉
〈(√(1 + ϕA)dA pA)

2〉

=
√

tA√
dA

〈√(
1 + δAi

)〉
. (B15)

Hence T ′
A = t ′

A/η = TfAtA/dAη = TfA TA/dA. Similarly, T ′
B =

TfB TB/dB. Then,

ε′
A ≈ εAdA/TfA + 1

4
(1 + ϕA)dAVAVfA ,

ε′
B ≈ εBdB/TfB + 1

4
(1 + ϕB)dBVBVfB ,

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g,

g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1. (B16)

APPENDIX C: PARAMETER ESTIMATION IN SEC. IV

1. Parameter estimation in the asymptotical case

For intensity errors kAIA and kBIB of Alice and Bob, Char-
lie’s measurement results are

x′
C = 1√

2
(
√

tB
√

kBxB − √
tA

√
kAxA) + xN ,

p′
D = 1√

2
(
√

tB
√

kB pB + √
tA

√
kA pA) + pN . (C1)

Thus,

V (x′
C ) = η

2
(u′′ + l − 2

√
1 − TA

√
1 − TBg) + ηχhom,

V (p′
D) = η

2
(u′′ + l + 2

√
1 − TA

√
1 − TBg1) + ηχhom,

(C2)

where

u′′ = TB〈kB〉VB + TA〈kA〉VA. (C3)

If Alice and Bob use the revised data
√

kU
A/BxA/B and√

kU
A/B pA/B for parameter estimation, we have

√
t ′
Ax = −

√
2

〈√
kU

A xAx′
C

〉
〈(√

kU
A xA

)2〉 =
√

tA√
kU

A

〈
√

kA〉,

√
t ′
Ap =

√
2

〈√
kU

A pA p′
D

〉
〈(√

kU
A pA

)2〉 =
√

tA√
kU

A

〈
√

kA〉. (C4)

Hence t ′
A = 〈√kA〉2

tA/kU
A . We define mkA := 〈kA〉, VkA :=

var (kA), and k′
A := kA/mkA . Then

E(k′
A) = 1, var(k′

A) = VkA/m2
kA

. (C5)

Making a Taylor expansion around k′
A − 1, we can obtain

〈
√

k′
A〉 ≈ 1 − VkA/8m2

kA
. (C6)

Using this, we have

〈
√

kA〉2 = 〈√
mkA k′

A

〉2
= mkA

(
1 − VkA/8m2

kA

)2
:= TkA . (C7)

Hence T ′
A = t ′

A/η = TkA TA/kU
A . Likewise, T ′

B = TkB TB/kU
B .

Similar to the procedure used before, we finally obtain

ε′
A ≈ εAkU

A /TkA + VkA

4m2
kA

kU
A VA,

ε′
B ≈ εBkU

B /TkB + VkB

4m2
kB

kU
B VB,

g′ =
√

1 − TA
√

1 − TB√
1 − T ′

A

√
1 − T ′

B

g,

g′
1 =

√
1 − TA

√
1 − TB√

1 − T ′
A

√
1 − T ′

B

g1. (C8)
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2. Parameter estimation in the finite-size scenario

In practical applications of CV-MDI-QKD, in order to
extract the secret key using the local data, Alice and Bob need
to displace their raw data as follows [49]:

xdA = x′
A − gx′

A
(r), pdA = p′

A − gp′
A
(r),

(C9)
xdB = x′

B − gx′
B
(r), pdB = p′

B − gp′
B
(r),

where x′
A, p′

A and x′
B, p′

B represent the raw data of Alice
and Bob, respectively. g∗(r), ∗ = x′

A, p′
A, x′

B, p′
B, is an affine

function of r and is defined as

g∗(r) = u∗x′
C + ν∗ p′

D, (C10)

where the parameters u∗ and ν∗ are chosen to satisfy

〈xdAx′
C〉 = 〈pdAx′

C〉 = 〈xdA p′
D〉 = 〈pdA p′

D〉 = 0,

〈xdBx′
C〉 = 〈pdBx′

C〉 = 〈xdB p′
D〉 = 〈pdB p′

D〉 = 0. (C11)

This implies

u∗ = 〈∗x′
C〉〈p′2

D

〉 − 〈∗p′
D〉〈x′

C p′
D〉

〈x′2
C 〉〈p′2

D〉 − 〈x′
C p′

D〉2 ,

ν∗ = 〈∗p′
D〉〈x′2

C

〉 − 〈∗x′
C〉〈x′

C p′
D〉〈

x′2
C

〉〈
p′2

D

〉 − 〈x′
C p′

D〉2 . (C12)

Then the covariance matrix of (xdA, pdA, xdB, pdB) equals
the conditional covariance matrix of (x′

A, p′
A, x′

B, p′
B) condi-

tioned on (x′
C, p′

D), which is sufficient to assess the security of
a CV-MDI-QKD (see Appendix A). The covariance matrix of
(xdA, pdA, xdB, pdB) has the form

γdAdB

=

⎡
⎢⎢⎣

〈
x2

dA

〉 〈xdA pdA〉 〈xdAxdB〉 〈xdA pdB〉
〈xdA pdA〉 〈

p2
dA

〉 〈pdAxdB〉 〈pdA pdB〉
〈xdAxdB〉 〈pdAxdB〉 〈

x2
dB

〉 〈xdB pdB〉
〈xdA pdB〉 〈pdA pdB〉 〈xdB pdB〉 〈

p2
dB

〉
⎤
⎥⎥⎦.

(C13)

By averaging the covariance matrix, we have it in a simple
form,

γdAdB =
[ ∑

aI
∑

cσz∑
cσz

∑
bI

]
, (C14)

where ∑
a

=
〈
x2

dA

〉 + 〈
p2

dA

〉
2

,

∑
b

=
〈
x2

dB

〉 + 〈
p2

dB

〉
2

,

∑
c

= 〈xdAxdB〉 − 〈pdA pdB〉
2

. (C15)

To obtain the covariance matrix γdAdB, the unknown pa-
rameters

∑
a,

∑
b, and

∑
c need to be estimated. If Alice and

Bob locally prepare 2n coherent states, then the real estimated
values are defined as∑̂

a

=
n∑

j=1

x2
dAj

+ p2
dAj

2n
,

∑̂
b

=
n∑

j=1

x2
dBj

+ p2
dBj

2n
. (C16)

For
∑̂

c, one can exploit the relationships between
〈xdAxdB〉, 〈pdA pdB〉 and 〈x′2

C 〉, 〈p′2
D〉, 〈x′

C p′
D〉, and obtain

∑̂
c

= ω1

n∑
j=1

x′2
Cj

n
+ ω2

n∑
j=1

p′2
Dj

n
+ ω3

n∑
j=1

x′
Cj

p′
Dj

n
,

n∑
j=1

x′
Cj

p′
Dj

n
=

n∑
j=1

(
x′

Cj
+ p′

Dj

)2

4n
−

n∑
j=1

(
x′

Cj
− p′

Dj

)2

4n
,

(C17)

where

ω1 = − 1
2

(
ux′

A
ux′

B
+ up′

A
up′

B

)
,

ω2 = 1
2

(
νx′

A
νx′

B
+ νp′

A
νp′

B

)
,

ω3 = 1
2

(
ux′

A
νx′

B
+ νx′

A
ux′

B
− up′

A
νp′

B
− νp′

A
up′

B

)
. (C18)

We can find that all the required parameters can be locally
estimated by Alice and Bob, without the need for public com-
munication. Hence, Alice and Bob can exploit all their local
data for both parameter estimation and secret key extraction.

Our goal is to give a lower bound on the secret key rate.
It is known that this bound can be obtained by computing∑max

a (the upper bound of
∑̂

a),
∑max

b (the upper bound of∑̂
b), and

∑min
c (the lower bound of

∑̂
c). By applying the

cumulative distribution function of the chi-square distribution,
the following bounds hold, except with probability sPE [50]:

max∑
a

=
∑

a

/(1 − δPE),

max∑
b

=
∑

b

/(1 − δPE),

min∑
c

=
∑

c

/(1 + δPE),

(C19)

where δPE =
√

n−18 ln (8/sPE).
In our protocol, we have

〈x′
Ax′

C〉 = −
√

tATkA

2kU
A

V ′
A,

〈p′
A p′

D〉 =
√

tATkA

2kU
A

V ′
A,

〈x′
Bx′

C〉 = 〈p′
B p′

D〉 =
√

tBTkB

2kU
B

V ′
B,

(C20)

where V ′
A/B = kU

A/BVM , and this yields

ux′
A

= −
√

tATkA

2kU
A

V ′
A

V (x′
C )

, νp′
A

=
√

tATkA

2kU
A

V ′
A

V (p′
D)

,

ux′
B

=
√

tBTkB

2kU
B

V ′
B

V (x′
C )

, νp′
B

=
√

tBTkB

2kU
B

V ′
B

V (p′
D)

. (C21)
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Then, we obtain

max∑
a

= V ′
A

1 − δPE

(
1 − tATkAV ′

AVCD

4kU
A

)
,

max∑
b

= V ′
B

1 − δPE

(
1 − tBTkBV ′

BVCD

4kU
B

)
,

min∑
c

=
√

tAtBTkA TkB

kU
A kU

B

V ′
AV ′

BVCD

4(1 + δPE)
,

(C22)

where VCD = 1/V (x′
C ) + 1/V (p′

D).
Further, considering the equivalence between the PM

scheme and the EB scheme of the CV-MDI-QKD protocol,

the covariance matrix γab|r of Appendix A can be rewritten as

γab|r = γ ′
ab =

[
�max

a I �min
c σz

�min
c σz �max

b I

]
(C23)

and

�max
a = 1

1 − δPE

(
Va − tATkA

(
V 2

a − 1
)
VCD

4kU
A

)
,

�max
b = 1

1 − δPE

(
Vb − tBTkB

(
V 2

b − 1
)
VCD

4kU
B

)
,

�min
c =

√
tAtBTkA TkB

kU
A kU

B

√(
V 2

a − 1
)(

V 2
b − 1

)
VCD

4(1 + δPE)
,

(C24)

where Va/b = kU
A/BVM + 1.

Finally, one can calculate the final secret key rate using the
boundary values derived above.
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